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ABSTRACT 

. 

 In this study, two-dimensional acoustic wave equation was solved with the finite differences, Fourier 

and variable scale methods. Two-dimensional wave propagation modeling was performed and boundary 

conditions were researched for the solution. The methods used in the modeling, source functions and 

differences were explained, various seismograms were formed and the used methods were compared. Only the 

window boundaries are used for the modeling in the Fourier method. Therefore, some phenomena are 

absorbed in the first and last traces in seismograms. Phenomena are observed in all the traces when the finite 

difference and variable scale methods are used. Thus, one of these two methods can be preferred for modeling 

complex structures. Variable-scale method is more useful than the finite difference and Fourier methods for 

one borehole geometry.  
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1. INTRODUCTION 

 

Generating synthetic seismograms and comparing them with real seismograms provide quite useful 

information in the applied geophysics. Studies have been conducted on this topic widely and successfully for 

many years. The increasing interest in seismic modeling led to the development of the methods with diverse 

accuracies and providing application convenience. Together with the increase in computer capabilities in 

1970s, wave equations were solved with various numeric methods and studies started on the synthetic 

seismogram modeling.  

Finite differences approximation [1-5] was used successfully to solve the wave propagation problems. 

Later, the finite elements method [6] began to be used. Modeling studies started with the Fourier transform as 

an alternative to both of these methods in 1980s [7-10]. In following years, the Hartley transform, which had a 

quicker algorithm, was given as an alternative to the modeling with the Fourier transform in 1990 and 1991 

[11-12].  The finite differences method is used for solving the drilling activities. Solving them is quite difficult 

with this method because the drilling hole is very small. Therefore, the variable scale method (VSM) [13], 

which was developed to calculate a small part of the deeper and wider drilling grate, is very useful at Cartesian 

and cylindrical coordinates. Irregular grids were used firstly by Jensen [14].  Afterwards, it was applied to the 

finite differences by Perrone, Kao [15], Demir [16] and Benito [17], respectively. 

Complicated structures in the ground are researched by means of synthetic seismograms. The contribution 

of these data is great for learning how the micro or global changes in the ground influence the wave forms and 

for interpreting the seismograms in the seismic stratigraphy. The interior of the ground has a complicated 

structure although it is assumed to consist of homogeneous layers many times. Diverse methods are used for 

synthetic seismogram modeling.  

The elastic wave equation includes P and S waves because it is comprised of horizontal and vertical 

components; hence, the wave reaching the boundary that separates the two media with different characteristics 

is reflected, broken and goes through mode transformation. And the acoustic wave is formed of only the P 

waves, because it causes longitudinal vibration. Apart from the specific purposes, only the P waves are 

recorded in the seismic prospecting and the S waves, which can be obtained in these records, are defined as 

noise. Therefore, the acoustic wave equation is used in modeling studies for seismic prospecting. 

 The acoustic wave equation can be solved with various numeric methods. In this study, the two-

dimensional acoustic wave equation was solved with the finite differences, Fourier and variable scale (VSM) 

methods, and various modeling’s were implemented.  

 

 

2. 2-D Acoustic Wave Equation 

The source function is defined as f(x,z,t) for the two-dimensional medium. Velocity is considered as c(x,z) for 

the two-dimensional medium and the two-dimensional acoustic wave equation [18] is stated as follows: 
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2.1. Finite Differences Approximation 

The finite differences approximation is a method especially and extensively used in solving the partial 

differential equations. This method is applied in three ways; 

namely the forward-differences, backward differences and centre-differences. [19]. Now, the value of a 

function, which has the u(x) value at X point, will be considered as u(x+∆x) at the x+∆x point and u(x-∆x) at 

the x-∆x point. For such a function, its derivative at x point is stated in terms of finite differences as follows: 

The first xU ∂∂  derivative can be written in terms of forward-differences as  
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In terms of backward-differences as  
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In terms of centre-differences as 
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And the 
22 xu ∂∂ derivative can be written by means of the central-finite differences as [19] 
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2.2. Fourier Approximation 

The Fourier transform pair for a f(t) function observed in the time medium is as follows [20]: 
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Here, w is the angular frequency and w=2nf(t). The equivalents of discrete and finite data in the frequency and 

time media are defined as [20].  
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In the formula, N is the number of data; the Nyquist frequency is equal to f(t)N=1/2∆t and showed with the 

∆f(t)=1/N∆t value. There was a changeover from the distance medium to the wave number medium in this 

study. In these two media, the discrete Fourier transform pair is stated as  
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Here, kx is the number of waves and has the value of  
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x corresponds to the spatial sampling interval and n=1,2,3,……,N.  

 The second-order 
22

xu ∂∂ and
22

zu ∂∂ derivatives in the acoustic wave equation given with the 

equation (1) in the modeling study will be calculated through the Fourier transform. The first and second 

derivatives of an f function observed in the distance medium with the help of the derivative attributes of the 

Fourier transform are written in terms of x as follows [20]. 
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For the Fourier transform, the amplitude spectrum is defined as follows: 
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2.3. Variable Scale Method 

This method is quite useful for the Cartesian and cylindrical coordinates [13]. 
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Figure 1.1 Variable scale geometry 

The following equation has been obtained with the variable scale method: 

ξ=αtanh(βx)           (13) 

 

α, β is a positive constant.        
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The 2-D wave equation has been converted for the variable scale method as follows:  
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Here, 

   A(ξ) = dx/dξ = (β/α)(α2
-ξ2

)  

is considered. 

 

3. Solving the 2-D Acoustic Wave Equation with Numeric Methods 

 When an analytical solution cannot be obtained for solving and modeling the wave equation of a 

seismogram belonging to the complicated underground, the numeric analysis methods are used directly. Very 

fast and high-capacity computers are needed to solve the acoustic wave equation with the finite differences 

and the Fourier transform. The developments in the computer technology provide this opportunity. 

 In the study, the two-dimensional acoustic wave equation will be solved numerically through the finite 

differences and the Fourier transform. 

3.1. Solving the 2-D Acoustic Wave Equation with the Finite Differences 

The derivative equalities in the 2-D acoustic wave equation can be written as follows 
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by using the forward-finite differences [18]. ∆t defines the time sampling interval; ∆x and ∆z are the sampling 

intervals in x and z directions respectively. ∆x=∆z=h is considered so that the operations, which will be carried 

out, can be easier and quicker. i,j and n are the indexes corresponding to the x (expansion direction), z (depth) 

and t (time) parameters respectively. If the equations (15), (16) and (17) stated above are substituted in the 

wave equation given in (1), 
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is obtained. When this equation is reformulated by considering P=c∆t/h, the equation 
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is obtained [5]. The grid used for solving the equation is given below (Figure 2.1). 
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Figure 2.1. 2-D grid network is used to solve the acoustic wave equation 

The equation (19) was solved between -a≤x≤a, 0≤z≤b boundaries, physical explanations of which are given 

below for the 2-D medium (Figure 2.2). 

 

Figure 2.2. 2-D boundary used in the solution of the acoustic wave equation 
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was accepted. The values given in the equation (20) are stated as  
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in terms of the finite differences [5].  
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3.2. Solving the 2-D Acoustic Wave Equation with the Fourier Approximation  

All the derivative equalities are calculated with the forward-finite differences while the 2-D acoustic 

wave equation is solved with the finite differences and modeling is conducted. During the modeling with the 

Fourier method, the spatial ( )2222
zuandxu ∂∂∂∂  derivatives are calculated with the Fourier transform and 

the temporal derivative with the 
22

tu ∂∂   finite differences. The   
22

tu ∂∂  derivative is given with the finite 

differences and the equation (17). Other derivative equalities are stated as  
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 Here, kx, kz point at the number of waves respectively for the x and z directions. The derivative 

operators on the left side of the equation (1) is stated for the Fourier transform as  
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If the equation (23) is substituted in the acoustic wave equation given with (1) during the modeling 

with the Fourier transform,  
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is obtained. If this last statement is reformulated, the equation 
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is obtained [11]. The grid (Figure 2.1) given in the section of solving with the finite differences was used 

while the equation (25) was solved with the Fourier transform. Besides, the initial condition given with the 

equation (21) was also used for this method. x series were formed by selecting the grid points parallel to the x-

axis while calculating the  
22

xu ∂∂  derivative. After the values found with the transformation were multiplied 

by –kx
2
 and the inverse transformation was calculated, the spatial medium was considered. The   

22
zu ∂∂  

derivative was calculated similarly. Grids parallel to the z-axis were selected and the values found with the 

transformation were multiplied by –kz
2
, then the inverse transformation was calculated and the spatial medium 

was considered again [18]. Afterwards, these two derivative values were added up and the 

DERIVATIVE_u(i,j) values were determined (For the Fourier transform (23). The 
22

tu ∂∂  derivative was 

calculated as explained with the equation (17) in the section of modeling with the finite differences, and the 

values on the grid were determined for the first time step when these values were substituted in the equation 

(25). Modeling was completed after all of these operations were repeated for all the time steps. 
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3.3. Solving the 2-D Acoustic Wave Equation with the Variable Scale Method (VSM) 

The 2-D acoustic wave equation (1) was solved with the variable scale method and the finite 

differences (16), then 
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was obtained. 

4. Boundary conditions for solving the Acoustic Wave Equation 

One of the difficulties experienced in the synthetic seismogram modeling for solving the wave 

equation numerically is the selection of the appropriate boundary conditions. The underground model must be 

restricted in horizontal and vertical directions in the seismogram calculations. If appropriate boundary 

conditions are not used, synthetic discontinuities will emerge in horizontal and vertical directions. These 

synthetic discontinuities are called “boundary (edge) reflections” [3]. Different methods were suggested to 

suppress the boundary reflections. These methods are applied generally in two ways. In the first method, the 

wave equation is divided into wave fields heading right, left and down, and the boundary levels are 

determined from the plane waves heading towards these boundaries [5, 20]. This method is applied to the 

solutions conducted with the finite differences. The second method is applied to the modeling’s performed 

with transformation and includes windowing the grid edges with the appropriate window [21]. It is difficult to 

use the boundary conditions for the Fourier transform, which are applied through the division of the wave 

fields; because the transformations will take place in the lines or the columns. Within the finite differences, the 

boundary values are determined beforehand, and then the inner points are defined. The windowing method can 

also be used for the modeling with the finite differences. The first method will be applied to the finite 

differences and the second method to the Fourier transform in order to explain these boundaries used in the 

implementation, and it will be given how these methods were applied. 

 

4.1 Boundary Conditions for the Finite Difference Method. 

 

The 2-D acoustic wave equation will be solved for -a≤x≤a, 0≤z≤b and t ≥0. These physical boundaries 

are stated in Figure 2.2. Appropriate boundary conditions must be chosen so that the wave does not go through 

reflection on the edges at x=±a and z=b.  These boundary conditions can be considered as 
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and the solution of this wave equation is 
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Here, θ is the angle between the x-axis and the wave front, and R is the reflection coefficient. If this equality is 

solved for R with its substitution in (27) or (28), the reflection coefficient will be 1. This shows that the 

coming wave has a complete back-reflection from the boundary. Appropriate boundary conditions must be 

chosen to suppress these reflections. If the wave field is divided as the fields heading right, left and down from 

the source, a plane wave field heading left is defined as [5]. 
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and a plane wave field heading right as 
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Here, P=c∆t/h. If the u(x,z,t) solution given in (29) is substituted in (30), (31) or (32) and solved for R, the 

reflection coefficient will be zero. This shows the accuracy of the boundary conditions. The equations (30), 

(31), (32) can be written in terms of the finite differences respectively as follows [5]. 
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4.2 Boundary Conditions for the Fourier Transform 

 

Data windowing is commonly used to suppress the edge reflections during the modeling with the 

Fourier transform. One of the window functions such as Hanning, Hamming, Blackman, triangle etc. can be 

used as the window function. In this study, Hanning window was used. Hanning window is defined with the 

equation   
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in the time medium. Here, t points at the time and T at the period. In Hanning window with a 1s 

sampling interval. Windowing corresponds to multiplication in the time medium and convolution in the 

frequency medium. The values determined with the equation (25) at each time step are multiplied by the 

window function to suppress the reflections from the left, right and lower sides of the 2-D model. 

The values of the model in x and z directions are windowed to suppress the edge reflections in the 2-D 

modeling.  

 

4.3. Boundary Conditions for the Variable Scale Method  

 

Absorbing boundary conditions for the variable scale method 
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and for ±=z a:  
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Absorbing boundary conditions for the VSM, the equations (19) and (20) were modified by using the finite differences.  
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5. Stability Condition and Grid Dispersion 

Some conditions must be fulfilled for solving the acoustic wave equation numerically. Selection of the 

plane sampling intervals (∆x, ∆z) and the time sampling interval depends on some criteria. When these criteria 

are exceeded, values will be found, which are more different than what is supposed to be found, and the 

seismograms of the structure to be modeled will not be obtained. 

The change in the wave velocity depending on the frequency is called Dispersion. The wave 

propagation becomes scattered with the increasing traveling time; this phenomenon is called Grid dispersion 

[4]. An adequate amount of grids must be used in the analysis of a wave length in order to avoid the grid 

dispersion. For this, the plane sampling number of the progressive wave front must be sufficient in terms of 

the wave length. The wave front progressing in the medium has the λ=c/fp wave length. Here, fp is the 
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frequency corresponding to the peak frequency of the source function. Selection of the λ/h (h: grid interval) 

ratio is important for eliminating the grid dispersion. 

 

5.1. Stability Condition for the Finite Differences 

The 1-2P
2
 value must be less than or equal to zero so that stable solutions can be obtained. P≤±1/√2 is 

found from 1-2P
2≤0. Because the P value cannot take negative values in the implementation,  
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   must be provided in order to obtain stable solutions. A solution of the 2-D acoustic wave 

equation given with the formula (1) is as follows:  
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 Here, x and z are real quantities, t is a complex (t=µ+iδ) quantity. If the equation (4.1) is substituted in 

(1) and reformulated, the equation  
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is obtained [22]. If a transformation is made as Sin
2α=1-cos2α/2 and x,z,t are considered zero, 1-2P

2
=0 

is obtained. Then, P=±1/√2 is found. P≤1/√2 must be provided for stable solutions. If P>1/√2 is considered, 

complex roots will be obtained and an exponentially increasing solution will be formed, where the negative 

imaginary roots i and j go infinite. 

 

5.2. Stability Condition for the Fourier Transform 

Some conditions must be fulfilled in order to obtain stable solutions in the Fourier method, as in the 

finite difference method. One of the solutions of the 2-D acoustic wave equation given in the formula (1) is  

iwtzikxik
eeeu zx=                                        (42) 

 If this solution is substituted in the equation (1) and reformulated, 

( ) 2122

2

zx kk
tc

+
<∆                                        (43) 

is obtained. The biggest value that the kx and kz wave numbers can get is the Nyquist value and these 

are stated as kx=π/h and kz=π/h. The stability condition is found  

π

2
<

∆
=

h

tc
P  

  by using these values. This given condition was obtained for the 2-D solution. 

 

          5.3. Stability Condition for the Variable Scale Method  

Some conditions must be fulfilled in order to obtain stable solutions in the variable scale method, as in 

the finite difference method. The following condition must be provided, which is similar to the condition valid 

for the finite differences: 

 
( )

2

1
≤

∆

h

tAc ξ
  A(ξ) is given as the local constant here.  
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6. Modeling Study 

Finding the effect of a structure, whose underground geometry and characteristics are known, is 

defined as modeling. Synthetic seismogram modeling’s can be conducted with various methods. The methods 

mostly used in practice are based on the numeric solution of the wave equations. Because the energy 

propagations, which show how the wave field behaves under the ground at a specific time, can be snapshot 

with these methods and the source can be placed at any depth and distance. Here, the 2-D acoustic wave 

equation was solved with the finite differences, variable scale method and the Fourier transform, and modeling 

was carried out. In all the models, the Gabor wavelet with a damping constant 4 was used as the source 

function and the source was applied to one of the grid points when t=0.  

 

6.1. Modeling Various Geological Structures 

Solving the wave equation with numeric methods and its synthetic seismogram modeling depend on 

the calculation of the derivative equalities with various methods. In this study, derivative equality theories will 

be handled with the finite differences, variable scale method and the Fourier transforms. The points to 

consider in the modeling are to provide the stability condition and eliminate the effect of the grid dispersion. 

These effects can be kept under control with the appropriate grid and source peak frequency. It will be 

explained how the sampling intervals and peak frequency must be selected during the comparison of the 

methods. The methods used in the 2-D modeling will be compared for a simple model; the advantages and 

disadvantages of the methods will be presented.  

 

6.2. Comparison of the Methods for 2-D Modeling 

 

The usage, advantages and disadvantages of the methods will be compared in the modeling conducted 

through the solution of the 2-D acoustic wave equation. A two-layers medium were chosen. The velocity of 

the first layer was considered as 1500 m/s, the velocities of the second layer as 3000 m/s and 4200 m/s, time 

sampling interval as ∆t=0.25 ms, plane sampling intervals as ∆x=∆z=h=10m for the finite differences, variable 

scale method and as ∆x=∆z=h=20m for the Fourier method (Fig. 6.2.1a and 6.2.1b). For the source term in 

equation (1), the first derivative of the Gaussian function  is used [3, 5]. 

 ( )f t t t es
t t

s( ) ( )= −
− −α

2

      (44)  

where the parameter α, which controls the wavelength content of the excition, is equal to 10000, and ts is 

delay time parameter, is chosen as to 0.1 s. The source is located 100 m below the surface. The receivers are 

accommodated at 10 m below the surface. The grid size and time increment are 3 m and 0.001 sec 

respectively, which ensure accurate calculation for frequencies up to 10 Hz. As the wave must travel through 

sea-water before it hits any solid structures, this would be the most logical medium to use. 
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Fig.6.2.1a Physical the geometry of the corner 

model used to generate seismograms [23].  

 

 

Fig.6.2.1b Physical the geometry of Two layer 

model used to generate seismograms [23]. 

The biggest velocity in the model is taken into account for finding the stability condition and the 

smallest velocity in the model is considered for showing the effect of the grid dispersion. Stability is P=c 

∆t/h≤0.707 as a condition for the finite differences and the VSM, and p≤0.2 for the Fourier transform. By 

considering 3000 m/s, the biggest velocity value in the selected two-layer model, p value was found for the 

finite differences and the variable scale method as;   

375.0
20

10*25.3000 4

==
−

P ( Fig.6.2.1a)   and     42.0
10

10*1.4200 4

==
−

P  (Fig.6.2.1b) 

 

for the Fourier method as; 

 

1875.0
40

10*25.3000 4

==
−

P  ( Fig.6.2.1a) and   21.0
20

10*1.4200 4

==
−

P (Fig.6.2.1b) 

 

 These values are between the stability boundaries.  

The λ/h ratio must be higher than 10h for the finite differences and the variable scale methods to avoid 

the grid dispersion. But it is adequate for the Fourier method when this ratio is about 3-4 h. It is seen here that 

a lower number of grids will be adequate in the Fourier method compared to the finite differences. When 1500 

m/s, the smallest velocity value in the two-layer model, is considered, a wave length of approximately 65m is 

obtained. λ/h ratio will be 13 for the finite differences, the variable scale and 6.5 for the Fourier method. The 

seismogram obtained with the finite differences and valuable scale method for the two-layer model is given in 

Fig. 6.2.2a and Fig. 6.2.3a,  and the seismogram obtained with the Fourier method is shown in Fig. 6.2.2b and 

Fig. 6.2.3b. Because the plane sampling intervals were considered as 20m for the finite differences, 200 traces 
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were obtained in Fig. 6.2.2a, and 100 traces in Fig. 6.2.2b due to the fact that the plane sampling interval was 

considered as 40m for the Fourier method. A structure, which is modeled with 200+200 grids through the 

finite differences, can be modeled with 100+100 or less grids through the Fourier method.  

 

Fig.6.2.2a. Synthetic seismograms generated from the finite differences and the variable scale methods of the 

2D acoustic wave equation for a medium infinite extent(Absorbing boundary conditions) 

 

 

Fig.6.2.2b. Synthetic seismograms generated from the Fourier method of the 2D acoustic wave equation for a 

medium infinite extent(Absorbing boundary conditions) 
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Fig.6.2.3a. Synthetic seismograms generated from the finite differences and the variable scale methods of the 

2D acoustic wave equation for a medium infinite extent(Absorbing boundary conditions) 

 

 

Fig.6.2.3b. Synthetic seismograms generated from the Fourier method of the 2D acoustic wave equation for a 

medium infinite extent( Absorbing boundary conditions) 
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7. Conclusions 

In this study, the 2-D acoustic wave equation was solved by using the finite differences, Fourier and 

variable scale methods, and synthetic seismograms were modeled. It is possible in modeling’s conducted with 

the wave equation to see how the wave field expanded at a specific time and to place the source at a desired 

depth and distance. Because of the fact that the Fourier method is more sensitive to the grid dispersion 

compared to the finite differences, 2 or 3 times more grid number is needed in modeling’s conducted with the 

finite differences and variable scale . Phenomena are absorbed in the first and last traces due to the window 

boundary used in the modeling with the Fourier method. The finite differences and variable scale method will 

be more appropriate in modeling the complex structures, because phenomena can be observed in all the traces 

within the finite differences and variable scale method.  

In the modeling’s conducted with the acoustic wave equation valid for a homogenous and isotropic 

medium, the decrease seen in the energy can be observed in seismograms due to the first arrivals, reflections, 

repeatable reflections, diffractions, global expansion and reflection coefficients. When the modeling of the 

mode transformations and absorption is intended, the wave equations that are appropriate for the 

heterogeneous medium must be analyzed. 
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